Generalized functions - HW 3

November 18, 2015

Question 1

We prove the claim: Assume (f_n) converges weakly to f. We will show that for every $x \in \mathbb{R}$ $f_n(x) \to f(x)$. Indeed, let δ_x be the translated δ -function. Since $C_c^{\infty}(\mathbb{R})$ is dense inside $C_c^{-\infty}(\mathbb{R}) = \overline{C_c^{\infty}(\mathbb{R})^w}$ there exists a sequence g_n^x which converges to δ_x in a distribution sense. That is for every $h \in C_c^{\infty}(\mathbb{R})$ we have that $\langle g_n^x, h \rangle \to \langle \delta_x, h \rangle = h(x)$. Now, consider the sequence $\langle f_n, g_n^x \rangle$ since everything is linear and continuous and nice we can calculate it in two ways:

$$\lim f_n(x) = <\lim_n f_n, \ \delta_x > = <\lim_n f_n, \ \lim g_n^x > = = =f(x)$$

The claim follows.

Question 2

Let $U = \bigcup_{i \in I} U_i$, $\xi_i \in C_c^{\infty}(U_i)$, and let $\{\varphi_i\}_{i \in I}$ be a partition of unity subordinate to $\{U_i\}$. Meaning, $\operatorname{supp}(\varphi_i) \subset U_i$, for each $x \in \mathbb{R}$ only finitely many φ_i are not zero and $\sum_i \varphi = 1$. W.L.O.G we may assume each U_i is contained inside some compact set, otherwise we just refine the cover through compact exhaustion of the sets.

Since each φ_i is compactly supported, we may define the distribution $\varphi_i \xi_i$. and then define $\xi = \sum \varphi_i \xi_i$. Note that $\xi \in C_c^{-\infty}(U)$, and that for each $f \in C_c^{\infty}(U_i)$ we have that $\langle \xi |_{U_i}, f \rangle = \langle \xi, \bar{f} \rangle$ where \bar{f} is the extension by zeros of f into U. By linearity, $\langle \xi, \bar{f} \rangle = \sum_j \langle \varphi_j \xi_j, \bar{f} \rangle$ Since \bar{f} is supported on U_i and all ξ_j agree with ξ_i on $U_i \cap U_j$ we may rewrite the sum as $\langle (\sum_j \varphi_j) \xi_i, \bar{f} \rangle = \langle 1 \cdot \xi_i, f \rangle$ and $\xi |_{U_i} = \xi_i$ as required.

Question 3

a) Before starting, we will prove the existence of linear functionals on $C_c^{\infty}(\mathbb{R})$ which are not continuous. Consider the linear functional $\varphi(f) = \sum_i \frac{1}{i!} f^{(i)}(0)$, it is clearly linear and according to Taylor's theorem it is also well defined. However, it does not depend on a finite number of derivatives, which is a converse to what we have seen for continuous functionals. Thus φ is a non-continuous functional.

To see that $C_c^{-\infty}(\mathbb{R})$ is not complete we consider it a subspace of $C_c^{\infty}(\mathbb{R})'$, the space of all

linear functionals (not necessarily continuous). As we will show in the next item this space is complete, and by the previous claim it does not equal $C_c^{-\infty}(\mathbb{R})$. Thus, it will be enough to show that $C_c^{-\infty}(\mathbb{R})$ is dense inside $C_c^{\infty}(\mathbb{R})'$.

Indeed, let $\emptyset \neq U_{A,\{V_f\}} = \{\varphi \in C_c^{\infty}(\mathbb{R})' : |\varphi(f)| \in V_f, \forall f \in A\}$ be a basic open set where A is a finite set and $\{V_f\}_{f \in A}$ are open in \mathbb{R} . Let $\varphi \in U_{A,V}$ We define the functional $\psi(f) = \phi(f)$ if $f \in \text{span}(A)$ and 0 otherwise. Clearly, $f \in U_{A,V}$ and since f is bounded it is also linear (f is also well defined since A is finite). Thus, $C_c^{-\infty}(\mathbb{R})$ is dense inside $C_c^{\infty}(\mathbb{R})'$ which implies that it is not a closed subspace. Since $C_c^{\infty}(\mathbb{R})'$ is complete this implies that $C_c^{-\infty}(\mathbb{R})$ is not.

b)We will use a similar tactic to show that $C_c^{\infty}(\mathbb{R})'$ is complete. Only, this time we consider it as subspace of $\mathbb{R}^{C_c^{\infty}(\mathbb{R})}$, the space of all functions (not necessarily linear of continuous) with the weak topology. That, is the basic open sets are precisely $U_{A,\{V_f\}} = \{\varphi \in \mathbb{R}^{C_c^{\infty}(\mathbb{R})} : |\varphi(f)| \in V_f, \forall f \in A\}$. But these are precisely the basic open sets in the product topology on $\mathbb{R}^{C_c^{\infty}(\mathbb{R})}$. Thus, the weak topology and the product topology are the same. Since R is complete any product of it is also complete and $\mathbb{R}^{C_c^{\infty}(\mathbb{R})}$ is complete. It will suffice to show that $C_c^{\infty}(\mathbb{R})'$ is closed inside $\mathbb{R}^{C_c^{\infty}(\mathbb{R})}$. Equivalently, we will show that its complement is open.

Let $\varphi \in \mathbb{R}^{C_c^{\infty}(\mathbb{R})} \setminus C_c^{\infty}(\mathbb{R})'$. There are two options:

- There exists a function f and a scalar $\lambda \neq 1$ such that $\varphi(\lambda f) \lambda \varphi(f) = \varepsilon > 0$. In that case, the basic open set which is $(\varphi(\lambda f) \frac{\varepsilon}{2}, \varphi(\lambda f) + \frac{\varepsilon}{2})$ on λf , $(\varphi(f) \frac{\varepsilon}{2}, \varphi(f) + \frac{\varepsilon}{2})$ on f and \mathbb{R} at every other point must contain φ but cannot contain any linear function.
- The second option is that there are two function f and g such that φ(f+g) ≠ φ(f)+φ(g). In which case we repeat the same trick as above only this time we consider 3 functions: f, g and f + g.

Overall, for every φ as above there is an open neighborhood which is disjoint from $C_c^{\infty}(\mathbb{R})'$ which concludes the proof.

Question 4

a) We denote $U = \mathbb{R}^n \setminus \mathbb{R}^k$. Since $C_c^{\infty}(\mathbb{R}^n)$ is a limit of Frechet spaces we may describe $\overline{C_c^{\infty}(U)}$ as the set of all limits of sequences inside $C_c^{\infty}(U)$. It is not evident that $\overline{C_c^{\infty}(U)} \subset \bigcap_{m=1}^{\infty} V_m$. Since for each element of a sequence in $C_c^{\infty}(U)$ all derivatives must vanish in a neighborhood of \mathbb{R}^k in the limit all derivatives must vanish in \mathbb{R}^k .

To see that $\bigcap_{m=1}^{\infty} V_m \subset \overline{C_c^{\infty}(U)}$ let $f \in \bigcap_{m=1}^{\infty} V_m$, we will find a sequence inside $C_c^{\infty}(U)$ which converges to f. To find such a sequence, consider the bump functions $\eta_i : \mathbb{R}^n \to [0, 1]$ such that $\eta_i(\mathbb{R}^k) = 1$ and η_i vanishes outside of $B(\mathbb{R}^k, \frac{1}{i}) = \{x \in \mathbb{R}^n : ||x - y|| > \frac{1}{i}, \forall y \in \mathbb{R}^k\}$. We now define $\overline{\eta_i} = 1 - \eta_i$. Now, the sequence $(f \cdot \overline{\eta_i})$ is clearly inside $C_c^{\infty}(U)$, since each such function vanishes on a neighborhood of \mathbb{R}^k . On the other hand, if we define the compact set $K = \operatorname{supp}(f)$ then all derivatives of $f \cdot \overline{\eta_i}$ converge uniformly to f in K. Thus, $f \cdot \overline{\eta_i} \to f$.

b) We consider the functional $\frac{\partial \delta}{\partial x_{k+1}}$. If there is any justice in this world, its support is contained in \mathbb{R}^k . On the other hand, observe the function $f(x) = x_{k+1} \cdot \varphi$ where φ is some bump function supported on a neighborhood of the origin. Clearly $f \in V_m$ for every m since it does

not have any derivatives in the first k coordinates.

On the other hand, $\langle \frac{\partial \delta}{\partial x_{k+1}}, f \rangle = -\langle \delta, \varphi + x_{k+1} \cdot \frac{\partial \varphi}{\partial x_{k+1}} \rangle = -1 \neq 0$. So, $\frac{\partial \delta}{\partial x_{k+1}} \notin \bigcup F_m$ as desired.

c) Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that $\varphi(\mathbb{R}^k) = \mathbb{R}^k$ and let $\xi \in F_m$ we would like to show that $\varphi(\xi) \in F_m$ as well. Where $\langle \varphi(\xi), f \rangle = \langle \xi, f \circ \varphi \rangle$. That is, if will suffice to show that if $f \in V_m$ then so is $f \circ \varphi$.

Clearly, $f \circ \varphi \in V_0$. Note that by the chain rule we may write the total differential as $D(f \circ \varphi) = Df \cdot D\varphi$. The condition on f assures that on \mathbb{R}^k , Df is a block matrix where all but the last (n-k)X(n-k) coordinates are zero. Also, Since $\varphi(\mathbb{R}^k) = \mathbb{R}^k$ we know that on \mathbb{R}^k , $D\varphi$ is a block matrix with one block on the first kXk coordinates and another on the last (n-k)X(n-k) coordinates. Thus $Df \cdot D\varphi$ is again zero on all but the last (n-k)X(n-k) coordinates. Thus $Df \cdot D\varphi$ is again zero on all but the last (n-k)X(n-k) coordinates, and $f \circ \varphi \in V_1$. We may now proceed by induction, while viewing $D(f \circ \varphi)$ as a function on a higher dimensional space.

Question 5

Since V is finite dimensional, we may assume W.L.O.G. that $V = \mathbb{R}^k$. Let $\{e_i\}_{i=1}^k$ be the standard basis of V. Let $\varphi \in C_c^{\infty}(\mathbb{R}^n, V^*)^*$, we may think about φ as $\sum_{i=1}^k \varphi_i \cdot e^i$, where $\{e^i\}$ is the dual basis.

We now have a bijection from $C_c^{\infty}(\mathbb{R}^n, V^*)^*$ to $C_c^{\infty}(\mathbb{R}^n)^* \otimes V$ by $\varphi \leftrightarrow \sum_{i=1}^k \varphi_i \otimes e_i$.